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What’s a Graph?
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definitions

4



Graph

A graph 𝐺 is a set of vertices 𝑉 and a 
collection of edges 𝐸 that connect a 
pair of vertices.

Notation: 𝐺 = 𝑉, 𝐸 or 𝐺(𝑉, 𝐸)

The vertices and edges store 
information.
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Social Networks

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16 6

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16


Computer Network Topologies

https://commons.wikimedia.org/wiki/File:NetworkTopologies.svg 7

https://commons.wikimedia.org/wiki/File:NetworkTopologies.svg


Neural Networks

https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4 8

https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4


Polygon Mesh

https://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.png 9

https://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.png


Traveling Salesman Problem

https://optimization.mccormick.northwestern.edu/index.php/File:48StatesTSP.png 10
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Seven Bridges of Königsberg

Problem: walk through the city 
that would cross each of those 
bridges once and only once.

Euler proved that for Königsberg
(at that time) the problem had no 
solution.

11Figure 1 from Solutio problematis ad geometriam situs pertinentis by Leonhard Euler, better known as The Seven Bridges of Königsberg.

https://commons.wikimedia.org/wiki/Leonhard_Euler


Problem Modeling with Graphs

12Figure 1 from Solutio problematis ad geometriam situs pertinentis by Leonhard Euler, better known as The Seven Bridges of Königsberg.
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Edge Types

We move in both 
directions

(Use line segments)

E.g., a flight route

𝑢: origin
𝑣: destination
(Use arrows)

E.g., a flight

Unordered pair of 
vertices (𝑢, 𝑣)

Ordered pair of 
vertices (𝑢, 𝑣)

Directed Undirected
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Edge Types
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Some Terminology

Endpoints (of an edge): the vertices connected by that edge (e.g., V 
and X are the endpoints of b).

Incident (on): when an edge touches a vertex (e.g., a is incident on V).

Adjacent (to): when two vertices are connected by a single edge (e.g., 
V and X are adjacent).

Parallel edges: edges with the same endpoints (e.g., h and i).

Self-loop: an edge that starts and ends at the same vertex (e.g., j).

Degree (of a vertex): the number of edges incident on that vertex 
(e.g., the degree of V is 3). NOTE: self-loops count twice towards 
degree (e.g., degree of Z is 4).

Simple graph: a graph with no parallel edges or self loops.
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Handshaking Theorem

Let 𝐺 = 𝑉, 𝐸 be an undirected graph. What is the 
relationship between the sum of the degrees of all the 
vertices and the number of edges?

෍

𝑣∈𝑉

deg 𝑣 = 2 ⋅ 𝐸

Proof rationale: each edge will be counted twice, once 
per endpoint.

෍

𝑣∈𝑉

deg 𝑣 = deg 𝑢 + deg 𝑣 + deg 𝑤 + deg 𝑥 + deg 𝑦 + deg 𝑧

෍

𝑣∈𝑉

deg 𝑣 = 2 + 3 + 4 + 5 + 2 + 4 = 20

𝐸 = 10 ⇒ 2 ⋅ 𝐸 = 2 ⋅ 10 = 20
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Maximum Degree

Let 𝐺 = 𝑉, 𝐸 be a simple, undirected 
graph. What is the maximum possible 
degree of any vertex?

The maximum possible degree of any 
vertex is 𝑉 − 1 because at most a vertex 
can be connected to all the other vertices.
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Edge Count

Let 𝐺 = 𝑉, 𝐸 be a simple, undirected 
graph. What is the maximum possible 
number of edges in terms of 𝑉?

𝐸 ≤
𝑉 𝑉 − 1

2

It follows from the previous property. There 
can be 𝑉 𝑉 − 1 edges incident on 
each of the 𝑉 edges, but we must divide by 
2 since we count each edge twice.
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Complete Graph

A Complete Graph is a simple undirected 
graph in which each pair of distinct vertices 
is connected by a unique edge.

Properties:

• Each vertex is of degree 𝑉 − 1

• 𝐸 =
𝑉 𝑉 −1

2

19By David Benbennick - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=511711

https://commons.wikimedia.org/w/index.php?curid=511711


More Terminology

Path: sequence of vertices connected by edges (e.g., {V, X, Z} and 
{U, W, X, Y, W, V}).

Simple path: a path with no repeated edges or vertices.

Cycle: a circular sequence of vertices connected by edges (e.g., 
{V, X, Y, W, U, V} and {U, W, X, Y, W, V, U})

Simple cycle: a cycle that has no repeated edges and no vertices 
(except the first and last, making it a cycle).

Length (of a path or cycle): the number of edges included in the 
path or cycle.

Subgraph: a subset of a graph’s edges (and associated vertices)

Connected graph: a graph where there exists a path connecting 
any two pair of vertices.
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Speaking of Paths

Euler Path: (aka. Eulerian Path or Eulerian Trail) A path that visits 
every edge of the graph exactly once.
E.g., {(V, U), (U, W), (W, V), (V, X), (X, W), (W, Y), (Y, X), (X, Z), (Z, Z), (Z, 
X)}

Euler Cycle: A Euler Path that starts and ends on the same 
vertex.

Hamiltonian Path: (aka. Traceable Path) A path that visits every 
vertex of the graph exactly once.
E.g., {U, V, W, Y, X, Z}

Hamiltonian Cycle: A Hamiltonian Path that starts and end on the 
same vertex.

Note: Euler/Hamiltonian Paths/Cycles are crucial for the 
definition and understanding of some problems in Math and 
Computer Science.
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Representation
02

How computers work with graphs
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Edge List

Represent the graph as a list of edges denoted 
by their endpoints.

E.g., 
{(U, V), (U, W), (V, X), (W, X), (V, W), (V, Z), (X, Z)}

Space: 𝑂 𝐸
Add edge: 𝑂 1
Check if two vertices are adjacent: 𝑂 𝐸
Iterate through the vertices adjacent to a 
vertex: 𝑂 𝐸
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Adjacency Matrix

Represent the graph as a matrix where the 
columns are vertices, and the rows are 
vertices.

Each cell is either 0 or 1, depending on 
whether there is an edge between the 
respective vertices
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Adjacency Matrix

U V W X Z

U 0 1 1 0 0

V 1 0 1 1 1

W 1 1 0 1 0

X 0 1 1 0 1

Z 0 1 0 1 0

U

V

X

W

Z
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Adjacency Matrix

U V W X Z

U 0 1 1 0 0

V 1 0 1 1 1

W 1 1 0 1 0

X 0 1 1 0 1

Z 0 1 0 1 0

U

V

X

W

Z

Space: 𝑂 𝑉 2 (bad for Sparse Graphs 𝐸 ≪ 𝑉 2)
Add edge: 𝑂(1)
Check if two vertices are adjacent: 𝑂 1
Iterate through the vertices adjacent to a vertex: 𝑂 𝑉 (slow if deg 𝑣 ≪ 𝑉 )
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Number of Paths 
of Length 𝑘

Let 𝐺 be a graph with adjacency matrix 𝐴 and 𝑘 be a 
positive integer. Then the matrix power 𝐴𝑘 gives the 
matrix where 𝐴𝑖,𝑗 counts the number of paths of length 
𝑘 between vertices 𝑣𝑖 and 𝑣𝑗.

𝐴 U V W X Z

U 0 1 1 0 0

V 1 0 1 1 1

W 1 1 0 1 0

X 0 1 1 0 1

Z 0 1 0 1 0

U

V

X

W

Z

𝐴3 U V W X Z

U 2 6 5 3 3

V 6 6 7 7 6

W 5 7 4 7 3

X 3 7 7 4 5

Z 3 6 3 5 2

https://www.math.utah.edu/~gustafso/s2017/2270/projects-2017/dylanJohnson/Dylan%20Johnson%20Graph%20Theory%20and%20Linear%20Algebra.pdf

Wolfram Alpha: {{0,1,1,0,0},{1,0,1,1,1},{1,1,0,1,0},{0,1,1,0,1},{0,1,0,1,0}}^3
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Adjacency List

Represent the graph as an array of 
adjacency lists, where each list indicates 
the vertices adjacent to one of the vertices.

U

V

X

W

Z
U V, W

V U, W, X, Z

W U, V, X

X V, W, Z

Z V, X
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Adjacency List

U

V

X

W

Z

U V, W

V U, W, X, Z

W U, V, X

X V, W, Z

Z V, X

Space: 𝑂 𝑉 + 𝐸 (good for Sparse Graphs)
Add edge: 𝑂 1 (NOTE: 𝑂 deg 𝑣 if parallel edges not allowed)
Check if two vertices are adjacent: 𝑂 deg 𝑣
Iterate through the vertices adjacent to a vertex: 𝑂 deg 𝑣
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What does this graph look like?

0 1 2 3 4 5

0 1 0 1 0 0 1

1 0 0 0 1 1 1

2 1 0 1 1 1 0

3 0 1 1 0 0 1

4 0 1 1 0 0 0

5 1 1 0 1 0 0
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4
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What does this graph look like?

0 6, 2, 1, 5

1 0

2 0

3 5, 4

4 5, 6, 3

5 3, 4, 0

6 0, 4

7 8, 7

8 8

10 2 3 4

5678
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Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

Finis Est
Do you have any questions?
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