

Note: Slides complement the discussion in class

What's a Graph? Practical examples and basic definitions

Representation How computers work with graphs

Table of Contents

U1 What's a Graph?

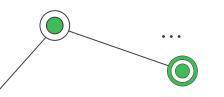
. . .

Practical examples and basic definitions

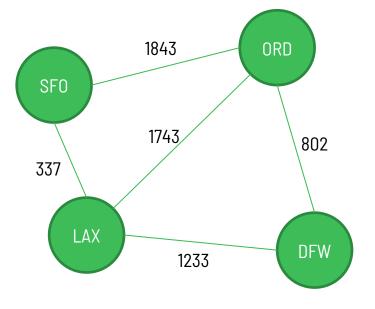
...

4

•••



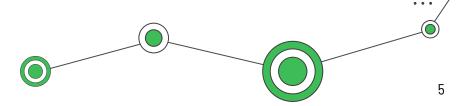
Graph

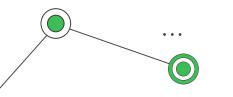


A graph G is a set of vertices V and a collection of edges E that connect a pair of vertices.

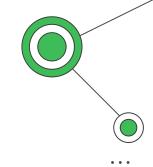
Notation:
$$G = \{V, E\}$$
 or $G(V, E)$

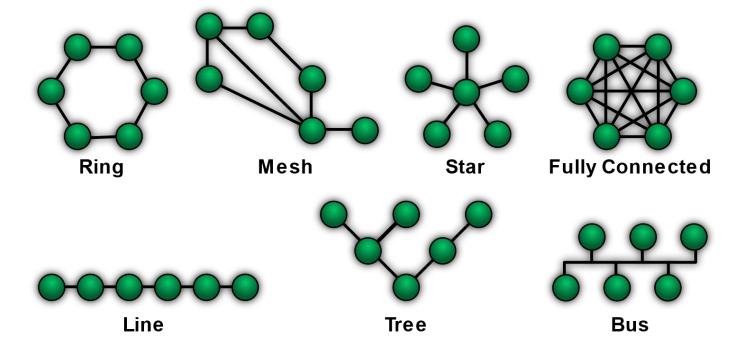
The vertices and edges store information.





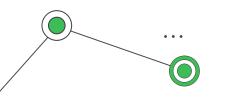
Social Networks



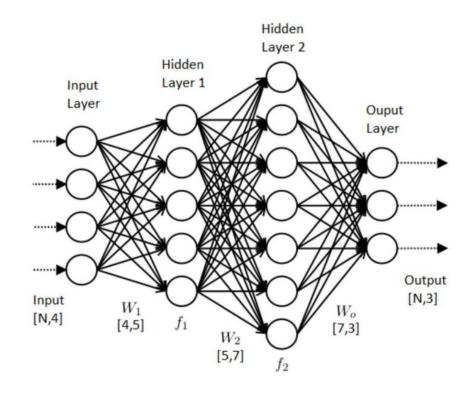


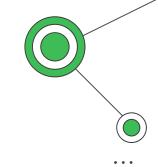
. . .

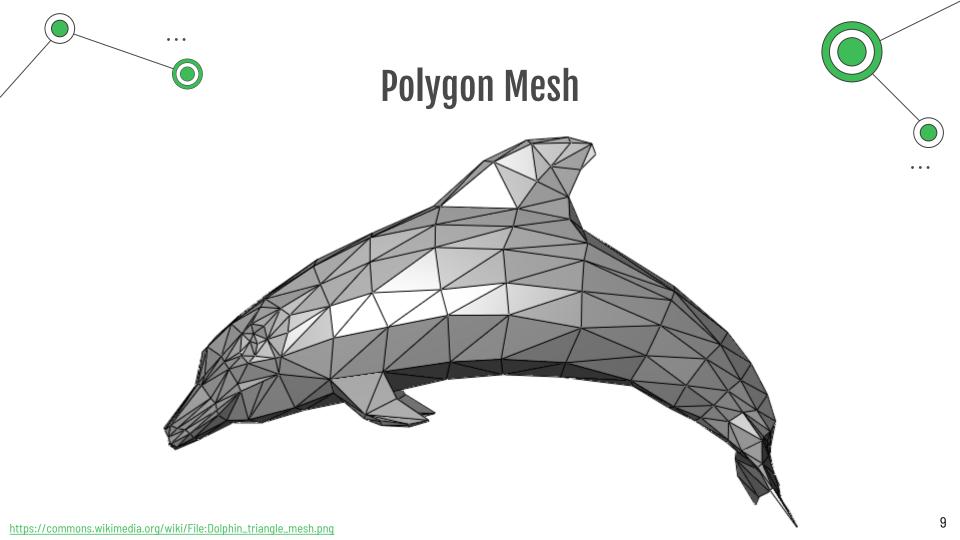
 \bigcirc

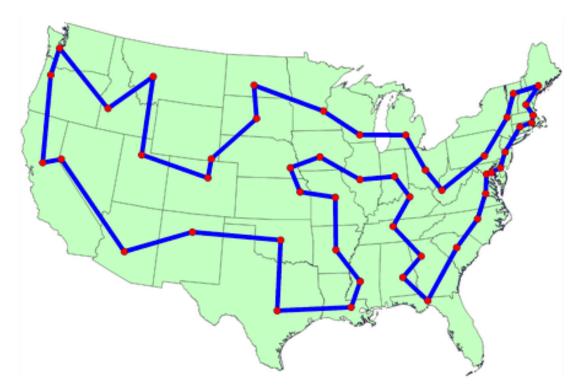


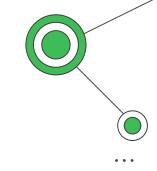
Neural Networks

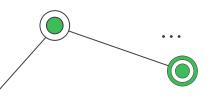




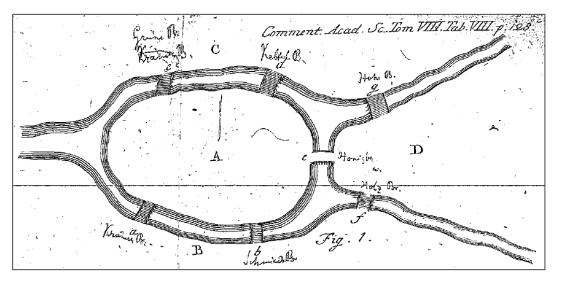








Seven Bridges of Königsberg



Problem: walk through the city that would cross each of those bridges once and only once.

Euler proved that for Königsberg (at that time) the problem had **no solution**.

Figure 1 from Solutio problematis ad geometriam situs pertinentis by Leonhard Euler, better known as The Seven Bridges of Königsberg.

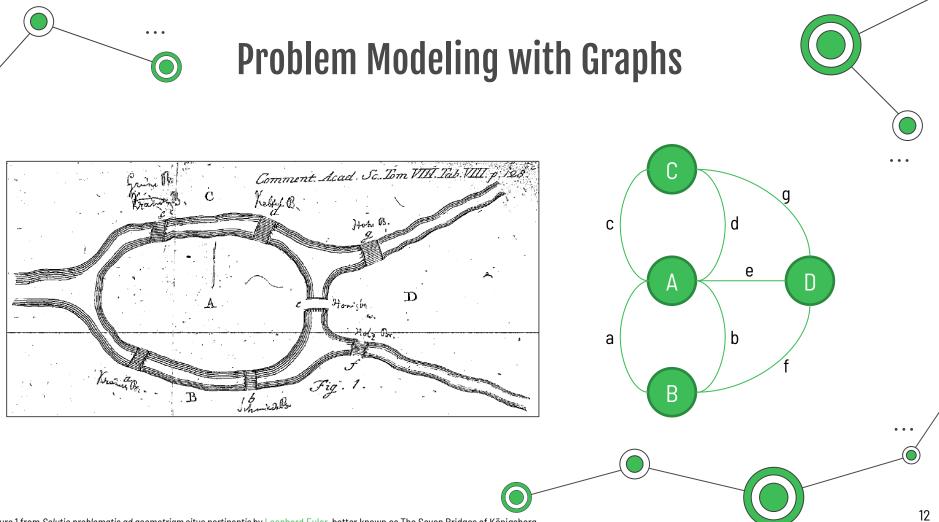


Figure 1 from Solutio problematis ad geometriam situs pertinentis by Leonhard Euler, better known as The Seven Bridges of Königsberg.

Edge Types

Directed Ordered pair of vertices (*u*, *v*)

. . .

u: origin v: destination (Use arrows)

E.g., a flight

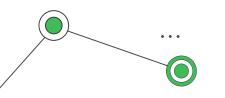
Undirected

Unordered pair of vertices (u, v)

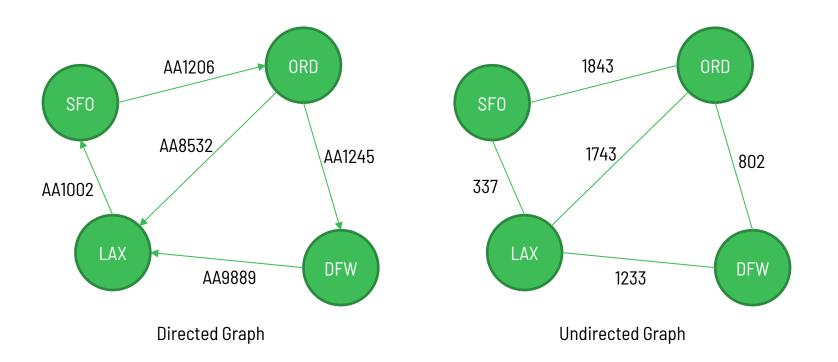
We move in both directions (Use line segments)

E.g., a flight route

13

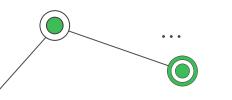


Edge Types



14

. . .



Some Terminology

Endpoints (of an edge): the vertices connected by that edge (e.g., V and X are the endpoints of b).

Incident (on): when an edge touches a vertex (e.g., a is incident on V).

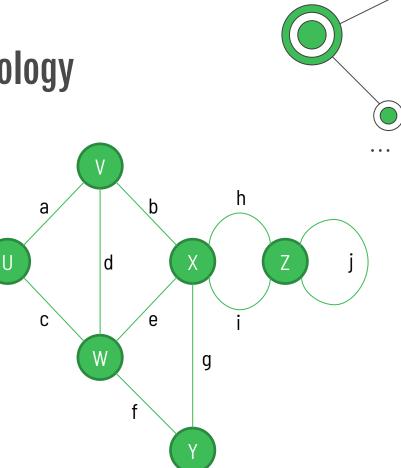
Adjacent (to): when two vertices are connected by a single edge (e.g., V and X are adjacent).

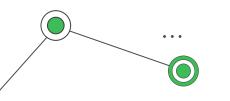
Parallel edges: edges with the same endpoints (e.g., h and i).

Self-loop: an edge that starts and ends at the same vertex (e.g., j).

Degree (of a vertex): the number of edges incident on that vertex (e.g., the degree of V is 3). **NOTE:** self-loops count twice towards degree (e.g., degree of Z is 4).

Simple graph: a graph with no parallel edges or self loops.





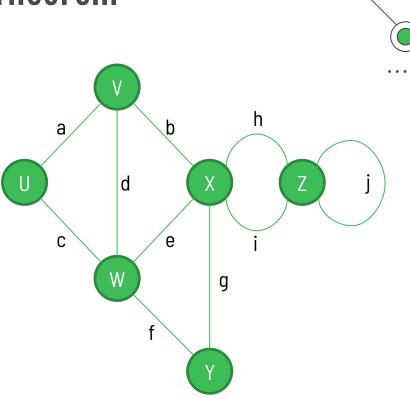
Handshaking Theorem

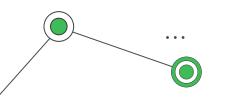
Let G = (V, E) be an undirected graph. What is the relationship between the sum of the degrees of all the vertices and the number of edges?

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

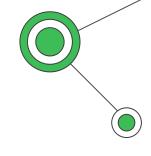
Proof rationale: each edge will be counted twice, once per endpoint.

$$\sum_{v \in V} \deg(v) = \deg(u) + \deg(v) + \deg(w) + \deg(x) + \deg(y) + \deg(z)$$
$$\sum_{v \in V} \deg(v) = 2 + 3 + 4 + 5 + 2 + 4 = 20$$
$$|E| = 10 \Rightarrow 2 \cdot |E| = 2 \cdot 10 = 20$$



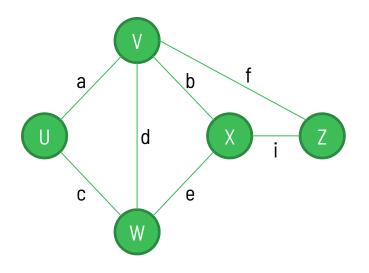


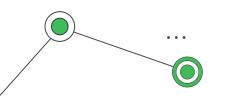
Maximum Degree



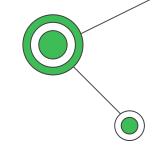
Let G = (V, E) be a simple, undirected graph. What is the maximum possible degree of any vertex?

The maximum possible degree of any vertex is |V| - 1 because at most a vertex can be connected to all the other vertices.





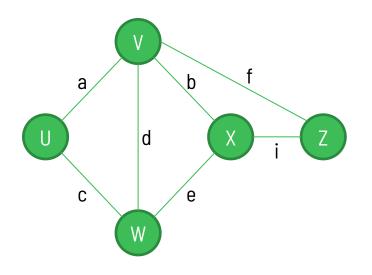
Edge Count

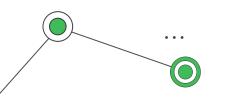


Let G = (V, E) be a simple, undirected graph. What is the maximum possible number of edges in terms of V?

$$|E| \le \frac{|V|(|V| - 1)}{2}$$

It follows from the previous property. There can be |V|(|V| - 1) edges incident on each of the V edges, but we must divide by 2 since we count each edge twice.





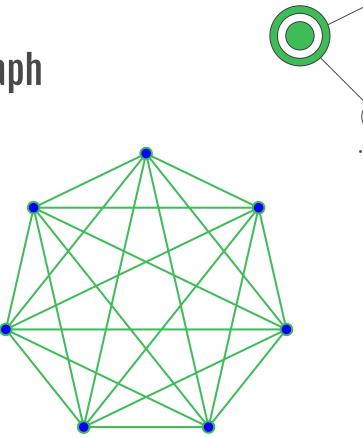
Complete Graph

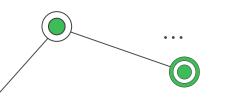
A Complete Graph is a simple undirected graph in which each pair of distinct vertices is connected by a unique edge.

Properties:

• Each vertex is of degree |V| - 1

• $|E| = \frac{|V|(|V|-1)}{2}$





More Terminology

Path: sequence of vertices connected by edges (e.g., {V, X, Z} and {U, W, X, Y, W, V}).

Simple path: a path with no repeated edges or vertices.

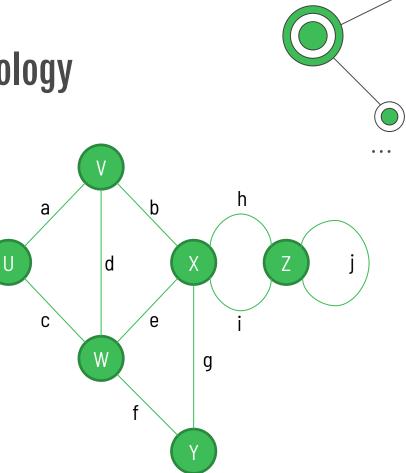
Cycle: a circular sequence of vertices connected by edges (e.g., $\{V, X, Y, W, U, V\}$ and $\{U, W, X, Y, W, V, U\}$)

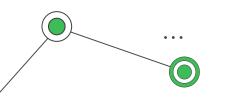
Simple cycle: a cycle that has no repeated edges and no vertices (except the first and last, making it a cycle).

Length (of a path or cycle): the number of edges included in the path or cycle.

Subgraph: a subset of a graph's edges (and associated vertices)

Connected graph: a graph where there exists a path connecting any two pair of vertices.





Speaking of Paths

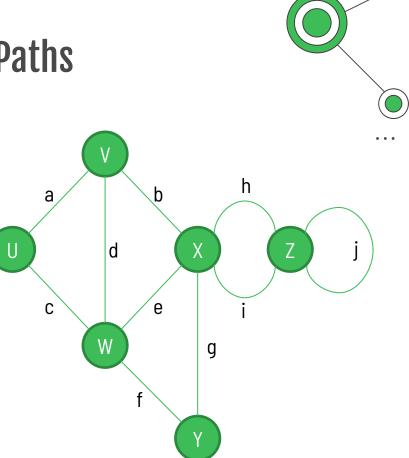
Euler Path: (aka. Eulerian Path or Eulerian Trail) A path that visits every edge of the graph exactly once. E.g., {(V, U), (U, W), (W, V), (V, X), (X, W), (W, Y), (Y, X), (X, Z), (Z, Z), (Z, X)}

Euler Cycle: A Euler Path that starts and ends on the same vertex.

Hamiltonian Path: (aka. Traceable Path) A path that visits every vertex of the graph exactly once. E.g., {U, V, W, Y, X, Z}

Hamiltonian Cycle: A Hamiltonian Path that starts and end on the same vertex.

Note: Euler/Hamiltonian Paths/Cycles are crucial for the definition and understanding of some problems in Math and Computer Science.

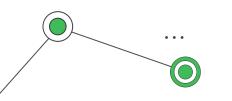


. . .

How computers work with graphs

22

•••

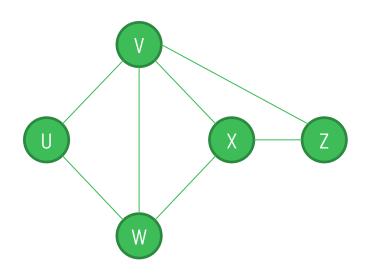


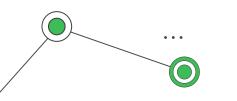
Edge List

Represent the graph as a list of edges denoted by their endpoints.

E.g., {(U, V), (U, W), (V, X), (W, X), (V, W), (V, Z), (X, Z)}

Space: O(|E|)Add edge: O(1)Check if two vertices are adjacent: O(|E|)Iterate through the vertices adjacent to a vertex: O(|E|)

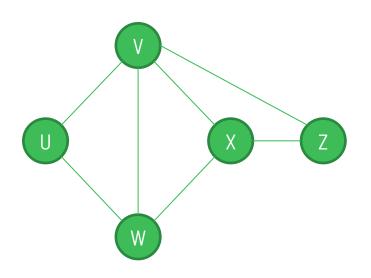


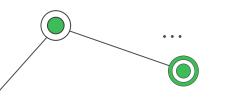


Adjacency Matrix

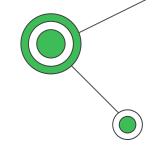
Represent the graph as a matrix where the columns are vertices, and the rows are vertices.

Each cell is either 0 or 1, depending on whether there is an edge between the respective vertices

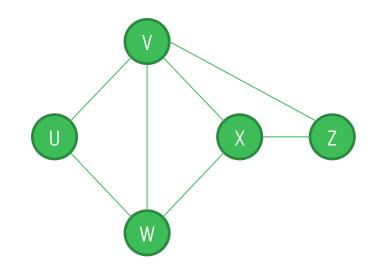


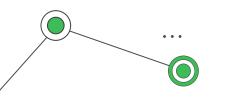


Adjacency Matrix



	U	V	W	X	Z
U	0	1	1	0	0
V	1	0	1	1	1
W	1	1	0	1	0
X	0	1	1	0	1
Z	0	1	0	1	0





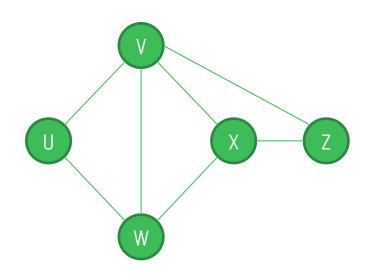
Adjacency Matrix

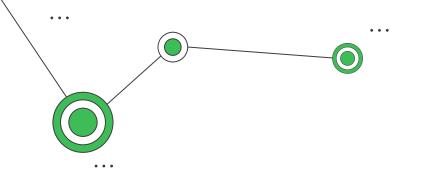
	U	V	W	X	Z
U	0	1	1	0	0
V	1	0	1	1	1
W	1	1	0	1	0
X	0	1	1	0	1
Z	0	1	0	1	0

Space: $O(|V|^2)$ (bad for Sparse Graphs $|E| \ll |V|^2$) Add edge: O(1)

Check if two vertices are adjacent: O(1)

Iterate through the vertices adjacent to a vertex: O(|V|) (slow if deg $(v) \ll |V|$)

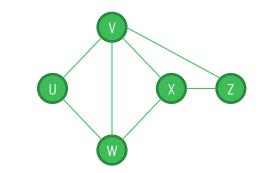




. . .

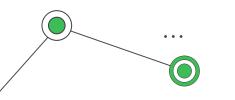
Number of Paths of Length k

Let G be a graph with adjacency matrix A and k be a positive integer. Then the matrix power A^k gives the matrix where $A_{i,j}$ counts the number of paths of length k between vertices v_i and v_j .

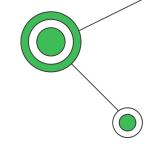


Α	U	V	w	X	Z	<i>A</i> ³	U	V	w	X	Z
U	0	1	1	0	0	U	2	6	5	3	3
v	1	0	1	1	1	v	6	6	7	7	6
w	1	1	0	1	0	w	5	7	4	7	3
X	0	1	1	0	1	X	3	7	7	4	5
Z	0	1	0	1	0	Z	3	6	3	5	2

Wolfram Alpha: {{0,1,1,0,0},{1,0,1,1},{1,1,0,1,0},{0,1,1,0,1},{0,1,0,1,0}}^3

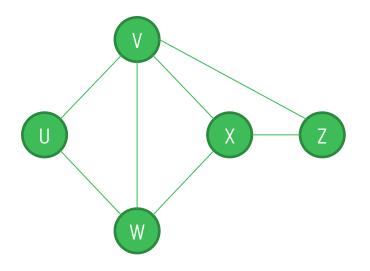


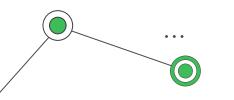
Adjacency List



Represent the graph as an array of adjacency lists, where each list indicates the vertices adjacent to one of the vertices.

U	V, W
V	U, W, X, Z
W	U, V, X
Х	V, W, Z
Ζ	V, X

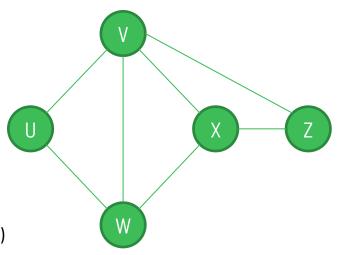




Adjacency List

U	V, W
۷	U, W, X, Z
W	U, V, X
Х	V, W, Z
Z	V, X

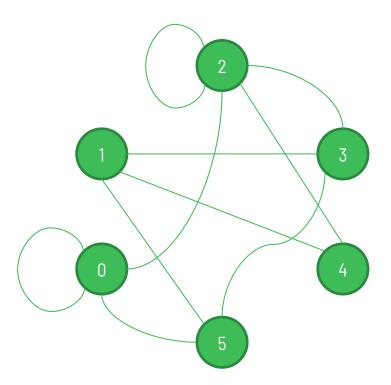
Space: O(|V| + |E|) (good for Sparse Graphs) Add edge: O(1) (NOTE: $O(\deg(v))$ if parallel edges not allowed) Check if two vertices are adjacent: $O(\deg(v))$ Iterate through the vertices adjacent to a vertex: $O(\deg(v))$

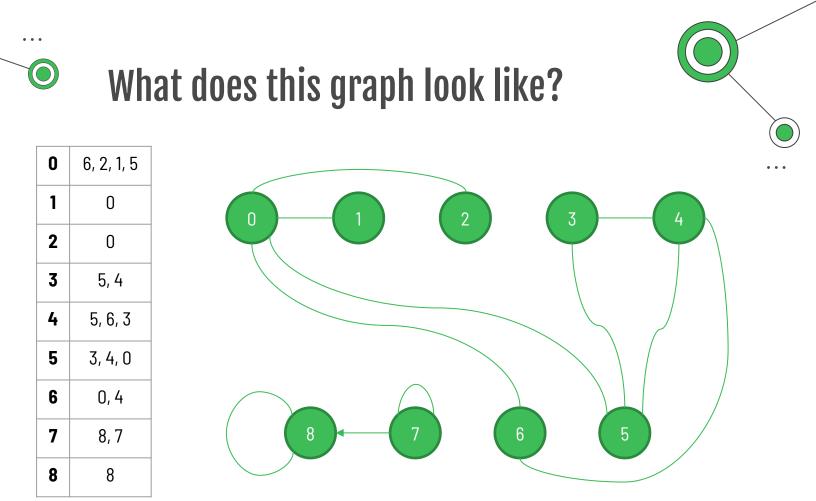


	0	1	2	3	4	5
0	1	0	1	0	0	1
1	0	0	0	1	1	1
2	1	0	1	1	1	0
3	0	1	1	0	0	1
4	0	1	1	0	0	0
5	1	1	0	1	0	0

. . .

 \bigcirc





Finis Est

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories